Myeloid proliferation associated with Down syndrome

Transient myeloproliferative disorder (TMD): Affects approximately 10% of infants with Down syndrome.

- Increase of megakaryocytic blasts in blood in newborn babies.
- Symptoms include thrombocytopenia, leukocytosis (with blasts), hepatosplenomegaly.
- Spontaneous remission within first 3 months

Acute myeloid leukemia: Affects 1-2% children with Down syndrome, 20-30% children with TMD develop acute myeloid leukemia

- Vast majority are <5 years of age
- Symptoms include thrombocytopenia, leukocytosis (with blasts), hepatosplenomegaly.
- May present as MDS or AML, but there are no biologic differences
- Megakaryocytic differentiation >50% cases

Morphology

- Blasts: Large blasts with basophilic cytoplasm, cytoplasmic blebbing, variable number of coarse basophilic granules
- Erythroid dysplasia common
- Bone marrow with prominent reticulin fibrosis, megakaryocytic dysplasia

Phenotype: Megakaryoblastic phenotype: CD41+, CD42+, CD61+, CD13+, CD33+, CD34+, CD117+, HLA-DR+, MPO-

Genetics: Trisomy 21. Subset GATA1 mutated.

Prognosis: TMD: Self limited
- AML: Young children have good prognosis. Older children have comparable prognosis to those without Down syndrome
 (Additional discussion in lesson 23)

Myeloid neoplasms associated with Fanconi anemia

Acute myeloid leukemia and myelodysplastic syndrome arising from Fanconi anemia patients 600-800 folds of increased risk as compared to normal children

- Most patients have one or several characteristic physical features: short stature, radial abnormality, microphthalmia, ear abnormality, deafness, café-au-lait spots, and anemia/pancytopenia (bone marrow failure)

Morphology: Typical myeloblasts morphology, multilineage dysplasia

Phenotype: CD13+, CD33+, CD34+, CD117+, HLA-DR+

Genetics: Mutations of one of the *FANC* genes. Chromosome breakage analysis (screen)

Prognosis: Unfavorable

Other related disorders: Shwachman-Diamond syndrome, Diamond-Blackfan syndrome, dyskeratosis congenita

Myeloid neoplasms associated with Germline Gata2 mutation

Inherited or congenital disorders with protean manifestations

- Median age of presentation 20 years old
- Clinical presentation includes infection, aplastic anemia, MDS/AML, lymphaedema

Associated syndromes:
MonoMac syndrome: Monocytopenia, non-TB mycobacterial infection

DCML deficiency syndrome: Deficiency of dendritic cells, monocytes, B and NK cells, prone to viral infections

Familiar MDS/AML: Myelodysplastic syndrome, acute myeloid leukemia

Emberger syndrome: Primary lymphedema, warts, predisposition to MDS/AML

Morphology: Typical myeloblasts morphology, multilineage dysplasia

Phenotype: CD13+, CD33+, CD34+, CD117+, HLA-DR+

Genetics: GATA2 mutations present in coding or non-coding regions. Full gene sequencing necessary for diagnosis

Prognosis: Unfavorable

Myeloid neoplasms associated with inherited disorders

Myeloid neoplasms with germline predisposition with thrombocytopenia

AML and MDS with germline mutations of *RUNX1, ANKRD26, or ETV6*

Autosomal dominant inheritance

Prevalence unknown

Associated with various degrees of thrombocytopenia and abnormal platelet function in childhood:

RUNX1 mutated cases: associated with abnormal platelet aggregation with collagen and epinephrine, dense granule storage pool deficiency

ANKRD26 mutated cases: associated with glycoprotein Ia deficiency, alpha granule deficiency

ETV6 mutated cases: no specific association

May also increase susceptibility of lymphoid neoplasm and solid tumors

Morphology: Typical myeloblasts morphology, multilineage dysplasia

Phenotype: CD13+, CD33+, CD34+, CD117+, HLA-DR+

Genetics: germline mutation of *RUNX1, ANKRD26, ETV6*

Second *RUNX1* or other gene mutation common (second hit)

Prognosis: Unknown

Genetic Counselling: Increased bleeding tendency in patient and affected family members

Clinical significance includes donor selection (related donors) for hematopoietic stem cell transplant

Myeloid neoplasms with germline predisposition without pre-existing disorder

AML and MDS with germline mutations of *CEBPA* or *DDX41*

Autosomal dominant inheritance

Prevalence unknown

Typical cases are biallelic mutated, with one germline mutation and second somatic mutation

CEBPA: Affects children or young adults, mean age of disease 25 y/o

DDX41: Long latency, mean age of disease 62 y/o, predominantly high grade diseases (high grade MDS, AML, MDS with 5q-)

May also increase susceptibility to lymphoid neoplasms and solid tumors

Morphology: *CEBPA*: Typical myeloblast morphology

DDX41: Low WBC, hypocellular bone marrow, prominent erythroid dysplasia

Phenotype: CD13+, CD33+, CD34+, CD117+, HLA-DR+

Genetics: *CEBPA*: Germline mutation at 5’ end, somatic mutation at 3’ end, normal karyotype

DDX41: Germline mutation at 5’ end and DEAD box, somatic mutation at helicase domain (3’ end). *DDX41* is located at chromosome 5q and deleted 5q may serve as 2nd hit

Prognosis: *CEBPA* favorable. *DDX41* poor
Genetic Counselling: Clinical significance includes donor selection (related donors) for hematopoietic stem cell transplant